

Модель фильтрации с фиксированной трубкой тока для элементов заводнения нефтяного пласта

д.ф.-м.н., проф. Мазо Александр Бенцианович д.ф.-м.н., доц. Поташев Константин Андреевич

Казанский федеральный университет Институт математики и механики им. Н. И. Лобачевского Кафедра аэрогидромеханики

07.10.2020 г.

Проблема

Моделирование сложных методов воздействия на нефтяной пласт

Детальное описание мелкомасштабных гидродинамических эффектов

Повышение размерности расчетной сетки фильтрационной модели

Шаг сеток подробных фильтрационных моделей **0.1 м**

Характерные размеры участка воздействия 10²-10³м (ХҮ), 10-10² м (Z)

Размерность сеток секторной модели **10⁶-10⁹**

Решение – специальные модели и расчетные схемы

Модель фиксированной трубки тока для локального воздействия ГТМ

История

- метод «жестких» (фиксированных) трубок тока,
 Крылов, Чарный и др., 1940-е;
- streamtube method,
 Higgins, Leighton, 1960-e, Martin, Wegner, 1970-e;
- гибридная схема, Lake и др., Emanuel, Renard, 1980-е
- двухэтапный метод, Baek, Hewett, 2000-е
- модель фильтрации с фиксированной трубкой тока, Мазо, Поташев, 2016

Основные положения

- область решения покрывается малым числом трубок тока между скважинами;
- границы трубок тока определяются по линиям тока для стационарной задачи;
- в каждой трубке тока строится аналитическое решение о переносе насыщенности;
- все трубки тока одномерны;
- задача двухфазной фильтрации в типичном поперечном сечении трубки тока дает зависимость обводненности от закачанных PV;
- сводится к стандартному методу в двумерном пласте;
- поперечное сечение каждой трубки тока снова покрывается набором трубок тока;
- для каждой пары скважин строится одна трубка тока;
- форма трубки тока определяется из пробных задач;
- в вертикальном сечении трубок тока решаются двумерные задачи двухфазной фильтрации;

Примеры приложения МФТТ

Закачка полимерного раствора

Разрушение вязкой оторочки полимера

Поле концентрации полимера

Динамика поля эффективной вязкости

Основные гипотезы модели фильтрации в фиксированной трубке тока

<u>ГИПОТЕЗЫ</u>

- 1. Скважины вертикальны, а расстояние между ними не превышает масштаб латеральной неоднородности пласта:
 - ХҮ-проекции ЛТ слабо зависят от Z;
 - ТТ ограничены по бокам вертикальными поверхностями.

оценка выполнена

Spirina E.A., Potashev K.A., Mazo A.B.

Evaluation of the reliability of the averaging over the reservoir thickness for the model with a fixed streamtube // Conf. Series: J. of Physics, 2019

2. Моделируются «быстрые» эффекты:

- граничные условия постоянны;
- режимы работы скважин постоянны;
- геометрия трубок тока (TT) фиксирована.

3. Для каждой пары взаимодействующих скважин достаточно одной эффективной трубки тока

требуется оценка

требуется оценка

Рассматриваемые схемы расстановки скважин

CXEMA-1

семиточечная аналог обращенной четырехточечной

ячейка периодичности элементов заводнения

CXEMA-2

обращенная семиточечная аналог четырехточечной

- – добывающие скважины
- 🖌 нагнетательные скважины

CXEMA-3

смещенная однорядная аналог стандартной пятиточечной (верхний элемент) аналог обращенной пятиточечной (нижний элемент) 1. Решается 2D-задача двухфазной фильтрации в плоскости ХҮ на детальной сетке

$$\begin{split} t > 0, & (x, y) \in D: \quad \nabla \cdot \mathbf{u} = \sum_{j=1}^{N_{W}} q_{j} \,\delta\left(x - x_{j}\right) \delta\left(y - y_{j}\right), \quad \mathbf{u} = -\varphi(s) \nabla p \\ & \frac{\partial s}{\partial t} + \nabla \cdot \left[f(s)\mathbf{u}\right] = \sum_{j=1}^{N_{W}} f\left(s\left(x_{j}, y_{j}\right)\right) q_{j} \,\delta\left(x - x_{j}\right) \delta\left(y - y_{j}\right) \\ & t = 0, \quad (x, y) \in D: \quad s = 0; \quad t > 0, \quad (x, y) \in \partial D: \quad \frac{\partial p}{\partial n} = 0; \\ & \left(x_{j}^{I}, y_{j}^{I}\right): \quad p = 1, \quad s = 1; \qquad \left(x_{j}^{P}, y_{j}^{P}\right): \quad p = 0. \end{split}$$

МКЭ - задача для давления МКО - задача для насыщенности

2. Определяются «точные» показатели работы скважин

$$q(t) \equiv q_1^P(t), \quad F(t) \equiv f\left(s\left(\mathbf{x}_1^P, t\right)\right)$$

3. Строится серия линий тока между взаимодействующими скважинами это исходные трубки тока (ИТТ) – N штук

длина ИТТ $\lambda_i \left(i = 1..N
ight)$

ширина ИТТ $w_i(l) = 1/|\mathbf{u}(l)|, \quad 0 \le l \le \lambda_i, \quad i = 1..N$

4. Строится эффективная трубка тока (ЭТТ)

ширина ЭТТ – как линейная комбинация ширин исходных трубок тока ИТТ

$$w(x) = \sum_{i=1}^{N} \alpha_i w_i(x), \qquad \sum_{i=1}^{N} \alpha_i = 1, \qquad x = \frac{l}{\lambda_i} \in [0,1]$$

задача двухфазной фильтрации в ЭТТ

$$\begin{split} \overline{u} &= \lambda \, u, \\ \overline{t} &= \lambda^{-2} t, \\ \lambda &= \sum_{i=1}^{N} \alpha_{i} \, \lambda_{i} \end{split} \qquad \overline{t} > 0, \ 0 < x < 1: \quad \begin{cases} \frac{\partial}{\partial x} \left(w \, \overline{u} \right) = 0, & \overline{u} = -\varphi \left(s \right) \frac{\partial p}{\partial x}, \\ \frac{\partial}{\partial x} \left(w \, \overline{u} \right) = 0, & \overline{u} = -\varphi \left(s \right) \frac{\partial p}{\partial x}, \end{cases} \begin{cases} \overline{t} = 0, & 0 \le x \le 1: \quad s = 0; \\ \overline{t} > 0, & x = 0: \quad p = 1, \quad s = 1; \\ \overline{t} > 0, & x = 1: \quad p = 0. \end{cases}$$

показатели работы скважин

$$q_{E}(t) = 2\pi r_{w} \overline{u} \left(\lambda^{2} \overline{t}, 1\right) / \lambda, \quad F_{E}(t) = f\left(s\left(\lambda^{2} \overline{t}, 1\right)\right)$$

весовые коэффициенты определяются из условия минимизации отклонения динамики показателей работы скважин

$$\alpha_{i} = \alpha_{0} - \alpha \lambda_{i}, \quad \alpha_{0} = \frac{1}{N} \left(1 + \alpha \sum_{i=1}^{N} \lambda_{i} \right), \quad \alpha \ge 0; \qquad \alpha^{*} = \arg \left[\min_{\alpha \ge 0} R(\alpha) \right]$$
$$R(\alpha_{i}) = \frac{1}{2} \left(R_{q}(\alpha_{i}) + R_{F}(\alpha_{i}) \right)$$

Результаты. Схема-1. «Точное» решение и трубки тока

Структура линий тока и динамика поля водонасыщенности в ячейке периодичности

0.8

0.6

0.4

0.2

n

Относительная ширина нормированных по длине трубок тока

Результаты. Схема-1. Сравнение «точного» решения с МФТТ

Истинный (маркер) и вычисленный в ТТ (линии) дебит скважины

Истинная (маркер) и вычисленная в TT (линии) обводненность скважины

Результаты. Схема-2. Сравнение «точного» решения с МФТТ

Результаты. Схема-3. «Точное» решение

0.8

0.6

0.4

0.2

0

Структура линий тока и динамика поля водонасыщенности в ячейке периодичности при *H* = *L*

Результаты. Схема-3. Сравнение «точного» решения с МФТТ

Результаты. Схема-3. Параметризация для произвольной геометрии

Аппроксимация относительной ширины ЭТТ

$$\frac{w(x)}{w_R} \approx W(x) = \begin{cases} 1+x(h-1)/d, & 0 \le x \le d; \\ h, & d < x < 1-d; \\ 1+(1-x)(h-1)/d, & 1-d \le x \le 1 \end{cases}$$

$$\eta = h/(\lambda/r_w) = \frac{1}{2}\theta + \frac{1}{15}; \quad d = \frac{1}{4}\ln\theta + \frac{1}{2}; \quad \lambda = \frac{3}{2}\theta^{-\frac{2}{3}}; \quad \theta = \frac{H}{L}$$

Зависимости коэффициентов аппроксимации от отношения сторон элемента заводнения: сплошная линия – приближенные зависимости; маркеры – аппроксимационные (●) и прогнозные (▲) точки $\theta = \{0.55, 0.6, 0.9\}$

МФТТ как элемент системы многомасштабного моделирования

Процессы	Задачи	Модели
Глобальная динамика заводнения залежи.	Общий проект разработки нефтяной залежи.	Суперэлементная модель.
Долгосрочный прогноз (десятки лет)	 прогноз общих показателей, анализ темпов выработки запасов, оценка энергетического состояния, анализ распределения запасов, выявление проблемных участков. 	Детализация (ХҮ / Z) 200-500 м / 10-100 м
Взаимодействие скважин на участке.	Проект разработки участков.	Трехмерная фильтрационная модель среднего разрешения.
Среднесрочный прогноз (месяц - год)	- локализация запасов нефти, - оценка взаимодействия скважин, - подбор скважин для мероприятий.	Детализация (XY / Z) 10-50 м / 1 м
Локальные процессы	Проектирование ГТМ.	Модели высокого разрешения:
вблизи скважин.		- модель фиксированной трубки тока,]
		- модели притока к трещинам ГРП
Краткосрочный прогноз (час - месяц)	- описание локальных эффектов, - обработка призабойной зоны, - горизонтальные скважины, - гидравлический разрыв пласта, - полимерное заводнение.	Детализация (ХҮ / Z) 1 м / 0.1 м

Заключение

- Предложен алгоритм построения единой эффективной фиксированной трубки тока, описывающей взаимодействие пары нагнетательной и добывающей скважин, позволяющая понизить размерность задачи двухфазной фильтрации без значительной потери точности воспроизведения показателей работы скважин.
- Показано, что для типичных схем заводнения однородного нефтяного пласта форма эффективной трубки тока может быть приближена кусочно-линейными функциями. Предложены простые функциональные зависимости, позволяющие построить эффективную трубку тока.
- Построенные трубки тока могут быть использованы в качестве готовых шаблонов для последующего моделирования сложных геолого-технических мероприятий в соответствующих элементах заводнения нефтяного пласта с понижением размерности решаемой задачи.
- Изложенный алгоритм продемонстрирован на примере заводнения несжимаемого однородного пласта постоянной толщины без учета капиллярных и гравитационных эффектов, но может быть применен и в более общем случае без указанных ограничений.

Основные публикации коллектива по теме исследования

- 1. Поташев К.А., Мазо А.Б. (2020). Численное моделирование локального воздействия на нефтяной пласт с применением фиксированных трубок тока для типичных схем заводнения. Георесурсы (принята к печати в № 4).
- 2. Мазо А.Б., Поташев К.А. (2020). Суперэлементы. Моделирование разработки нефтяных месторождений: *Монография*. М.: ИНФРА-М, 220 с.
- 3. Spirina E.A., Potashev K.A., Mazo A.B. (2019). Evaluation of the reliability of the averaging over the reservoir thickness for the model with a fixed streamtube. *Conf. Series: J. of Physics*, 1158 042024, pp. 1-6.
- 4. Мазо А.Б., Поташев К.А., Баушин В.В., Булыгин Д.В. (2017). Расчет полимерного заводнения нефтяного пласта по модели фильтрации с фиксированной трубкой тока. *Георесурсы*, т. 19, № 1. С. 15-20.
- 5. Мазо А.Б., Поташев К.А. (2017). Локальное уточнение решения суперэлементной модели разработки нефтяного пласта. *Георесурсы*, т. 19, № 4. С. 10-16.
- 6. Поташев К.А., Мазо А.Б., Рамазанов Р.Г., Булыгин Д.В. (2016). Анализ и проектирование разработки участка нефтяного пласта с использованием модели фиксированной трубки тока. *Нефть. Газ. Новации,* 187(4), с. 32-40.
- 7. Шелепов В.В., Булыгин Д.В., Мазо А.Б., Поташев К.А., Рамазанов Р.Г. TubeGeo 1.0. Моделирование геолого-технических мероприятий методом трубок тока. *Свид. о гос. рег. ПрЭВМ* № 2016611381 от 01.02.2016 г.

Спасибо за внимание!